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or 
I 

Pnr2 [(1 + 2 Hlr) + U(O); u(O) + r~ J P ' 

( flU + flU) dX] . 
dx fl.l: 

The formula for the effective area is now 

Ap = nr2 [(1 + 2 Hlr) + U(O): u(O) + 
I 

+ 1 S (dU dU) d ] rP P di + dx x 
o 

o 

(2 .2) 

of which expression (2.1) is a special case with U and 
u zero. We may evidently obtain (2.2) more directly 
by visualising the neutral surface as the effective 
boundary of the piston in which case the frictional 
force corresponding to b) above vanishes and we are 
left simply with thc prcssure forccs acting on the 
cffcctivc boundarics of the piston. We also have the 
cquivlllcnt form 

Ap = nr2 [1 + 2 u(O)/r + 

2 (Sl dp Jl du )] + - - h - • dx + p - . dx 
rP dx dx 

(2 .3) 
00' 

I 

which is convenient for use when the integr~l S - h 
o 

p 

:; dx (or S h dp) is of interest, as is the case, for 
o 

example, whell the flow method (section 5) is conside
red. 

b) The effects of special assumptions 

The problem of calculating the actual changes of 
effective area of practical designs of piston-cylinder 
assembly, on the basis of the above general formulae, 
is complicated. It would be necessary to know the 
interrelated quantities u, U and p as fUllctions of x, 
and since the pressure gradient dp/dx is governed by 
the normal equation of viscous flow (see equation 5.1), 
the pressure dependence of the coefficient of viscosity 
would also need to be taken into account. It is not, 
however, the aim of the present paper to attempt such 
calculations, but rather to describe direct experimen
tal methods for the accurate determination of the 
dist,ort.ion factors with the minimum of assumptions 
regarding the dctailed behaviour of the system. 'Ye 
thcrefore considcr only certain special cases which are 
useful in thc applications which follow. 

A useful appl'Oximation may be derived from the 
foregoing cquations by assuming that the component 
of u(:t:) or U(x) due to the fluid pressure in the inter
space betwecn piston and cylinder may be taken to 
be proportional to the pressure p(x) at the same posi
tion. The relevant terms ill the integrals on the right 
hand side then become integrable without the neces
sity for any further knowledge of the actual functional 
forms of u(x), U(x) or p(x). There is fair support from 
elastic theory for this assumption, more especially in 
the case of the solid cylinder in which the length is 
large compared with its radius, a condition which 
applies to the pistons of most pressure balance assem-

blies other than those catcring for only a low rangc of 
prcssurc. CTmEE (1889, 190'l) has given polynomial 
solutions for the equilibrium of a finite solid cylindcr 
for cascs in which the latcral pressure is cither a 
linear or quadratic function of thc axial co-ordinate. 
The conditions are satisficd by functions u(x) and 
p(x) which are accuratcly proportional, provided the 
normal tractions over the flat ends, instcad of being 
identically zero, are assumcd only to average to 7.ero. 
By Saint-Venant's principle, however, the effect of 
this disturbance will be appreciable for only a short 
distance from each end, and may be neglected if the 
ratio of length to radius is considerable. The constant 
of proportionality is the same as in the case of uniform 
pressure on a solid cylinder of infinite length. FlLON 
(1902) has obtained solutions for pressure distribu
tions expressed in series of trigonometric functions of 
x which lead to a similar result provided the wave
lengths involved arc fairly large compared with the 
radius. Tho clTects of (liscontinuouH prcssurc distribu
tiOIlS, or nltrl'Ow lmlH1H of applied prCHHlIl'e, have abo 
heon diHcllHHed (BAlt'I'ON 1!H'l; RAN 1\1 N 1!) ·I ·~; TltAN'I'Im 

& CltAOOS 1!J..l.7), wiLh Lhe genoml result Lhat OVOIl Lhc 
cfl'eets of diseontinllities are largely lost at an axial 
distance of only about half the radius. If, thcrcforc, 
the pressure changes along the length of the asscmbly 
are reasonably smooth, no great error is likely to be 
incurred by applying this assumption to the piston of 
the assembly. Taking into account the additional 
change of radius due to the end thrust on thc piston, 
it is easily shown that the rclevant terms involving u 
on the right hand side of equation (2.2) reduce to 
P (3 a - 1)/2 E where E and a are respectively Young's 
modulus and Poisson's ratio, so that we now have, 
using also (2.1), 

I 

A = A [1 + P(3a-1) + U(O) + _1_Jp dU . dxJ 
p 0 2E r rP dx 

o 
(2.4) 

Another useful form, obtained directly from (2.3), is 
p 

Ap =:n:r2[1 + P(3;-1) + r~ S hdP] . (2.5) 
o 

The application of a similar assumption to deal 
with the effects of internal pressure in a hollow cylin
der with thick walls is less secure. CHREE (1901) has 
given a corresponding solution with U(x) and p(x) 
proportional for the case where p(x) is a linear fUIIc
tion of x, but its validity would depend on the condi
tions assumed at the ends. The case of a discontinuous 
distribution of pressure has been considered briefly by 
TRANTER (1946) . In the ideal case of a cylinder whose 
length is large compared with its radius and wall 
thickness, where the working section is removcd some 
distance from the points of attachment of the ends, 
and the pressurc distribution is reasonably smooth, 
a useful approximation may result. Proceeding from 
equation (2 .4), and taking for definiteness the case 
where the cylinder walls are not subjected to longitu
dinal stress, we then obtain (LOVE 1952), denoting by 
R' the outer radius of the cylinder, 

A =A {1+..!...(3 -1) +..!...[(1+a)R'2+(1-a)R2J! 
p 0 2E (J 2E R'2- Jl2 

(piston) (oylinder) 
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